

OPTIMA7 Biogas

Professionelles robustes Biogas-Handmessgerät.

Für Kontrollmessungen an Biogas-/ Biomethananlagen und Deponien.

OPTIMA7 Biogas

Flexibles Handgerät für Kontrollmessungen

Wir bieten Ihnen mit OPTIMA7 Biogas zusätzlich die Möglichkeit, Biogas-Druck, Strömungsgeschwindigkeit sowie die Temperatur zu messen.

Das Gerät im Detail

Die Besonderheiten im Überblick

Bedienung und Farbdisplay

Intuitive Führung durch die Messprogramme dank einfacher und moderner Bedienung

Kondensat und Schmutz bleiben außen vor

Großvolumig dimensionierter Kondensatabscheider mit bewährtem Sternfilter inkl. Wasserstopp-Funktion

Kombi-Sonde

Für die gleichzeitige Messung von Strömungsgeschwindigkeit und Gas, mit Temperaturmessung zur genormten Volumenstromberechnung

Messdaten speichern, übertragen und drucken

SD-Karte, Mini-USB und Bluetooth für Datenübertragung auf Smartphone, Tablet oder PC – oder Druck via Infrarot

Biogas und Strömungsgeschwindigkeit synchron messen

Messung mittels Staurohr im Bio- oder Deponiegas von 2 ... 100 m/s sowie Berechnung des Volumenstromes in m³/h

Praktisches Zubehör für unterwegs

Optional: Transportkoffer, Gasentnahmesonde, MRU-Speedprinter und Nylon-Transporttasche

OPTIMA7 Biogas

Technische Daten

Biogas/-methan	Messmethode	Messbereich min./max.	Auflösung	Wiederholgenauigkeit
Methan (CH ₄)	Infrarot	0 100 %	0,01%	± 0,3 % oder 3 % v. Mw.*
Kohlendioxid (CO ₂)	Infrarot	0 100 %	0,01%	± 0,3 % oder 3 % v. Mw.*
Schwefelwasserstoff (H ₂ S)	elektrochemisch	0 2.000/5.000 ppm	1 ppm	± 5 ppm oder 5 % (0 500 ppm), 10 % (> 500 ppm) v. Mw.
Sauerstoff (O ₂)	elektrochemisch	0 25 %	0,01%	± 0,2 % absolut
Wasserstoff (H ₂)	elektrochemisch	0 1.000/2.000 ppm	1 ppm	± 5 ppm oder 5 % (0 500 ppm), 10 % (> 500 ppm) v. Mw.
Stickstoff (N ₂)	berechnet	0 80 %	1 %	
Heizwert (Hu)	berechnet	0 50 MJ/m ³	0,1 MJ/m ³	

Motorenabgas (BHKW)	Messmethode	Messbereich min./max.	Auflösung	Wiederholgenauigkeit
Sauerstoff (O ₂)	elektrochemisch	0 25 %	0,01%	± 0,2 % absolut
Kohlendioxid (CO ₂)	Infrarot	0 100%	0,01%	± 0,3 % oder 3 % v. Mw.*
Kohlenmonoxid (CO)	elektrochemisch	0 4.000/10.000 ppm	1 ppm	± 10 ppm oder 5 % (0 4.000 ppm), 10 % (> 4.000 ppm) v. Mw.
Stickstoffmonoxid (NO)	elektrochemisch	0 1.000/5.000 ppm	1 ppm	± 5 ppm oder 5 % (0 1.000 ppm), 10 % (> 1.000 ppm) v. Mw.
Stickstoffdioxid (NO ₂)	elektrochemisch	0 200/1.000 ppm	1 ppm	± 5 ppm oder 5 % (0 200 ppm), 10 % (> 200 ppm) v. Mw.
Stickstoffoxide (NO _x)	berechnet	0 5.000 ppm	1 ppm	± 5 ppm oder 5 % (0 1.000 ppm), 10 % (> 1.000 ppm) v. Mw.

Deponiegas	Messmethode	Messbereich min./max.	Auflösung	Wiederholgenauigkeit
Methan (CH₄)	Infrarot	0 100 % UEG	0,01%	± 0,3 % oder 3 % v. Mw.*
Kohlendioxid (CO ₂)	Infrarot	0 100%	0,01%	± 0,3 % oder 3 % v. Mw.*
Schwefelwasserstoff (H ₂ S)	elektrochemisch	0 2.000/5.000 ppm	1 ppm	\pm 5 ppm oder 5 % (0 500 ppm), 10 % (> 500 ppm) v. Mw.
Sauerstoff (O ₂)	elektrochemisch	0 25 %	0,01%	± 0,2% absolut
Wasserstoff (H ₂)	elektrochemisch	0 1.000/2.000 ppm	1 ppm	\pm 5 ppm oder 5 % (0 500 ppm), 10 % (> 500 ppm) v. Mw.
Stickstoff (N ₂)	berechnet	0 80 %	1 %	
Heizwert (Hu)	berechnet	0 50 MJ/m ³	0,1 MJ/m³	
Strömungsgeschw.	Staurohr	1 200 m/s	0,1 m/s	± 0,2 m/s (2 10 m/s), ± 0,5 % (> 10 m/s)
Volumenstrom	berechnet	0,1 6.000 m ³ /s	0,1 m ³ /s	Flächenquerschnitt einstellbar
Differenztemperatur	NiCrNi	-40 +1.200 °C	1 °C	± 2 °C, 0,5 % v. Mw.*
Differenzdruck		± 300 hPa	0,01 hPa	0,03 hPa, 1 % v. Mw.*

Allgemeine technische Daten	
Betriebstemperatur	+5 +45 °C; RF bis 95 % nicht kondensierend
Lagertemperatur	-20 +50 °C
Datenspeicher	16.000 Messungen
Schnittstellen	Mini-USB, SD, IRDA, Bluetooth (Datentransfer zu Smartphone, Tablet oder PC)
Interne Stromversorgung	Li-lonen
Externe Stromversorgung	Steckernetzteil 100 240 Vac, 50 60 Hz, 5 V DC, 1,2 A
Schutzklasse	IP40
Abmessungen (B x H x T)	110 x 225 x 52 mm
Gewicht	ca. 750 g

MRU – Kompetenz in Gasanalyse. Seit über 35 Jahren.

MRU · Messgeräte für Rauchgase und Umweltschutz GmbH

Fuchshalde 8 + 12 74172 Neckarsulm-Obereisesheim Fon 07132 99620 · Fax 07132 996220 info@mru.de · www.mru.eu

MESSTECHNIK Samuel Morse Str. 6 2700 Wiener Neustadt www.mru.at

MESSGERÄTE FÜR RAUCHGASE UND UMWELTSCHUTZ GMBH

> Tel.: 0 26 22 / 866 15 - 0 Fax: 0 26 22 / 866 15 - 15 office@mru.at